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ABSTRACT

As a first step in the development of a more general theory of
propagation and transport of noilse by compressional waves in a nonuniform
electron gas, this report considers in particular the medium-like pro-
pagation in an electron gas in equilibrium with one or two plane emitters.
In analogy with acoustic propagation in a neutral gas, adiabatic com-
pressions are tentatively postulated; the solutions are then accepted as

physically significant only if they satisfy the conditions for negligible
Landau damping.

It is found that the plasma resonance freguency or low-freguency
cutoff frequency required to meet these conditions occurs between infinite
plane emitters only if one of the emitters is operating strongly
temperature-limited. This "unsaturated state' of the gas is precisely
specified by the value of an integration constant in the expression for
the d-c electric field in the gas. The plasma resonance frequency is
found to be constant everywhere in the gas, despite the fact that the
electron density varies widely between the emitters.

In no other states, "saturated" or "supersaturated", does such a
plasma frequency and the conseguent approximately adiabatic propagation

exist. In other words, these states show practically no real medium-like
behavior.

The extension of this analysis to states of accelerated flow is
in progress, but corresponding closed-form solutions of the adisbatic
wave equation have not yet been found.
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NOISE FROPAGATION IN A NONUNIFORM ELECTRON GAS
I. INTRODUCTION

The problem of minimizing the nolse factor of amplifiers utilizing
beams of electrons requires for its solution a good understanding of the
physical origin of the noise fluctuations in the beam as well as of the
manner in which these fluctuations are propagated or transported along
the beam., This need can be met by constructing theoretical models that
are simple to handle intuitively as well as analytically and nonetheless
lead to reasonably accurate predictions of the behavior of a physical
device in the laboratory.

The conventional single-velocity theory, which disregards the
thermal velocity spread of the electrons, fails to predict correctly the
behavior of an electron gas under conditions where the drift velocity of
the gas is of the same order of megnitude or smaller than the thermsal
velocities. In the design of more realistic and consequently more compli-
cated models, their intultive value will be considerably enhanced if it
is possible to take advantage of analogies with previously familisr
subject matter in mathematics, physics and engineering.

The exploration of such analogies 1s an essential facet in the
work reported here. In addition to the conventional boundary-value
methods and transmission-line and waveguide theory, acoustics and aero-
dynamics are considered, and comparison with these two fields necessarily
raises thermodynamic questions. The velocity of "sound" in an electron
gas, l.e., the velocity of plane compressional waves, is investigated

under conditions of uniform temperature but nonuniform density. Other
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interesting analogies, such as possible electron shock waves, and the
parallel between an electron gun and a hypersonic windtunnel have not
been seriously explored.

The thermodynamics of an electron gas is approached from the known
relations between the distribution function, Boltzmann's H-function and
the entropy. The calculation of the entropy contribution from the dis-
tribution in velocity space is well known; on the other hand, the
evaluation of the contribution from the randomness in x-y-z space proceeds
along somewhat unconventional lines, although it is a natural extension
of the conventional application of Poisson statistics to the shot-noise
current in temperature-limited electron flow. At first sight it may
appear that the electric enexgy assoclated with the x~y-z distribution
is so small that the corresponding entropy contribution can be neglected.
However, a nonrandom distribution could lead to considerable electric
energy storage, and inclusion of this entropy component makes it possible
to exclude automatically such nonphysical distributions or variations of
distributions as incompatible with the laws of thermodynamics.

If thermodynamics is disregarded and an analysis of the properties
of the electron gas 1s based solely on continuity in phase space, Lorentz
force equation for the electron, and Maxwell's equations for the electro-
magnetic field, no unigue solutions for the propagation of transverse and
compressional waves are obtained. The work of Landau', Bohm and Gross?2,
Bernstein®, etc. on thin plasmas with a Maxwellian velocity distribution
apply also to an electron gas. Their solution of the above equations
by a lLaplace-transform method from specified initial or boundary conditions
permits a classification of component solutions into incoherent or dig-

orgenized disturbances and organized or medium-like disturbances. The




© e e e — it s < 7 o - g

former are similar to the random motions in a very thin gas of neutral
particles, the latter are "organized", i.e., given coherent shape by
the combined influence of the electromagnetic field and the stationary
electron statistics. The latter solutions are of two different kinds,
one essentially electromagnetic waves (TEM, ™, and TE waves) with the
dielectric constant and the velocity of propagation modified by the
presence of the electrons, the other purely compressional or "acoustic"
in 1ts nature. The solutions of primary lmportance in electron devices
are the TM-waves, which are necessarily at least two-dimensional. However,
a one-dimensional solution of the compressional kind, which is much
simpler to handle analytically, permits certain conclusions about cor-
responding TM-solutions, in the present case as well as in the well
established single-velocity approximation. Landau showed that the
organized compressional waves are unattenuated only as an asymptotic
limit. The "landau demping"”, however, is very small in many problems of
technological interest. Like copper losses in short waveguides or
wavegulde components, it can often be disregarded in a first-order theory.
The approximately undamped compressional solutions which are
chaeracteristic of the electron gas as an "elastic" medium, may be deter-
mined by borrowing from the conventional derivation of the acoustic wave
equation the idea that the expansions and contractions of the gas should
be adiabatic, l.e., leave its entropy invariant. In acoustics this
postulate disregards the presence of viscous friction; in an electron
gas it obviously excludes Landau damping. This idealization of the
Physical relations suggests that the physical significance of the result
has to be evaluated in each case. If the solutions have wavelengths

large compared to the Debye wavelength, the Landeu damping is known to
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be small and the solutions are good approximations. On the othexr hand,
conditions indiceting heavy damping suggests that the gas has no
appreciable medium-like behavior. Correlations from point to point or
from instant to instant are insignificant.

An adiabatic change is reversible; it is easily understood that
an irreversible change of the velocity distribution will take place if
the denslty in velocity space is appreciable in the vicinity of a velocity
equal to the phase velocity of the electric field. The reguirement
quoted above is of course equivalent o the demand that the phase velocity
of the wave be far outside the thermal velocity spread of the electrons.

The same result as obtained by means of the adiabatic condition
can be achieved by anothexr postulate, which is arrived at by a completely
different reasoning, presented in a previous report?s5, The formulation
of this postulate involved the statement of the electrokinetic power
flow in the form of the product of a convection-current density and an
electrokinetic potentlial. It was shown that such an equivalent potential
may exist in a one-dimensional environment. The criterion for small
medium-like disturbances was taken to be that a small plane-wave pertur-
bation should be accompanied by small but nonzero perturbations of
convection-current density and eguivalent potential; for perturbations of
other kinds no finite equivalent potential exists for a nonzero convection-
current perturbation.

The equivalence of the adiabatic and the electrokinetic-potential
criteria will be tested in the appropriate contexts in the present

investigation.
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II. THEORETICAL POSTULATES AND OUTLINE OF PROCEDURE

Iet p(r,u) be the expected value of the statistical number
density of electrons in an e lectron gas at the point (x,y,z,ux,uy,uz)
in p-space. Continuity in p -space and the Lorentz force equation then

combine to the following form of Boltzmann's transport equation

- e
R4 @D @ DB - () o, ©
coll.
where the differential vector operators
J 9 B
vr“beJ“JByJ’kE’ (2)
o) s 3
Vo= Lo+ Jg—+ks— (3)
u ., ou, ou,
_and the constant
q
4 = -:2 (%)

is the charge-to-mass ratio of the electron. All electron velocities
are assumed to be so small compared to the velocity of light that the
relativistic mass variation can be disregarded. The last two members
of Bq. 1 indicate that discrete binary interactions, "collisions", are
assumed to be a negligible Ffactor.

If Eq. 1 is integrated over the full range of the velocity

coordinates, the result states conservation of electrons in (x,y,z)-space.

If all terms are multiplied by mu before the integration, conservation
of momentum is expressed by the equation obtained; finally, the factor
mu2/2 leads o a statement of conservation of energy. Conservation of

higher-order moments of the velocity distribution is of less interest.
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In a previous report*)s the third one of the above mentioned
integrated equations was used in conJunction with Maxwell's equations to
find the appropriate form of Poynting's theorem for a volume containing

an electron gas

f div (13;m+1_°’ek) av = f (Pem +?ek) ds = f %(sem+gk) av
v s v

(5)
where Sém and €k are the electromagnetic and kinetic energy density,
respectively, and Pem and Pek denote electromagnetic and electrokinetic
power flow, respectively.

For pericdic disturbances the last member averages out to zero;
consequently, the theorem states that under steady-state periodic (or
stationary stochastic) conditions the net average power crossing any
closed boundary surface is zero.

The particularly interesting quantity in Bg. 5 is the electro-

kinetic power flow

P, = in [ Z 2 {(u_i-ui -@pr}mw(a-azpr)} . (6)

X,¥Y,%

In one-dimensional applications, such as plane compressional wave

motion in a uniform gas, this expression reduces to

+ 00

m J[ wolu,z)du .. (7

-00
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If a conservative elastic medium is to be used as a model for the
propagation of disturbances in an electron gas, it can be shown that
it must be possible to factor this vector into a product of one convection-
current-density vector and a scalar "electrokinetic potential". This
approach was discussed and 1llustrated in the previous report mentioned
above.

Here we shall base the investigation of medium-like propagetion
on more fundamental considerations. It is helpful to compare the
derivetion of the D'Alembertian wave equation in acoustics. For that
case the physical postulates are the egquations of continuity, Newton's
equation of motion, and the relation for adiabatic compression of the
gas. Our Eq. 1 above combines the first two of the corresponding acoustic
equations, but Maxwell's equations for the electromagnetic field do not
constitute a complete counterpart to the third one. It may not be obvious
if and how an adiabatic compression of én electron gas can be defined.
In acoustics, an adiabatic change of state is reversible and leaves the
entropy of the gas invariant. It may appear questionable that a volume
or a volume element of an electron gas cen be taken as a "temporarily
closed system" for the purpose of evaluating thermodynamic coordinates,
such as temperature, entropy, etc., from thermodynamic principles.

However, statistical mechanics offers unambiguous definitions of tem-

perature and entropy in terms of the velocity variance and the Boltzmamn

H-function, as long as a statistical distribution function can be stated

for each volume element of the electron gas. In the ranges of frequency

and temperature to be considered in this paper

[BX
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vhere fi is Planck's constant h divided by 2r, w is the radisn frequency
of a perturbation considered, k is Boltzmann's constant and kT is the
variance of the velocity distribution in each dimension multiplied by
the electron mass. Consequently classical statistical mechanics is
applicable, and it will be assumed that an equilibrium state at the

surface of an electron emitter or, if so stated, elsewhere, is described

by a Maxwell-Boltzmann distribution function. For an ensemble of a

given number N of electrons the entropy per electron in terms of the

distribution density function S(r,u) in p~space can then be written:

A N
S = -k j -————D(I;\I’u) log —————p(%’u) av (9)

where dV is the volume element in u-space and VN is the total volume in
pw-space occupied by the N electrons.
A small variation 56 of g(r,u) is adiabatic if the corresponding

variation in entropy NSSe is zero.

0 = N&S_ = - Nk 1+ lo plx g/édw (10)
- e g N N ’

Vﬁ being the volume after the adiabatic change of state.
' If the position and the velocity of an electron st a given instant

are taken to be independent random variables, ﬁ(r,u) may be written as

N times the product of two independent probability densities, one in

velocity space, related to the kinetic energy of an electron and one in

(x,y,2) space, related to its potential energy. Because of the logarithmic




nature of Eq. 9, the entropy variations may be computed separately from

the two probability densities Sr and ﬁu and the result added

0 = NS, = (asr+asu) N . (11)

In terms of time and space coordinates this condition may be

written

dSe ase
0 = Nzt =N }T+(um-v)se}, (12)

where W is the ensemble mean of the instantaneous electron velocity. In
the case of a small time-varying perturbation pl(r,u) on a steady-state
distribution po(r,u), the first-order relation between the corresponding

entropy quantities obtained from Eq, 12 is

38
0 = N{ —B—i—l+ (umo' ?) Sg, + (uml- ) seo} . (13)

The complete system of equations consisting of a first-order
perturbation version of Eq. 1, Maxwell's equations for the electromagnetic
field and Eq. 13 determine the medium-like propagation of disturbances
in an electron gas, subject to the reservation for Landau damping given
previously.

For the representation of plane compressional waves p-space may be
reduced to two dimensibns, u, and z, if the z-axis is taken as the direc-

tion of propagation and the electron gas is uniform at least with x and

y. Also the uz-dimension may conveniently be eliminated by the three

successive integrations of Eq. 1 mentioned above. However, it is

expedient to modify this procedure slightly. Iguation 1 may before
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integration in turn be multiplied by each Hermite polynomial Hn(v) of
the normelized velocity v = uz/c, where o2 is the mean square value of
u, according to the steady-~state distribution at some convenient reference

point. ILet us define

40
an(z) = ﬁ? J[ Hn(v)p(z,ov)c av . (1)

Then quantities & mey be considered as the coefficients in a series

expansion of p(u) in velocity space

plov)odv = }: an@n(v) av (15) |
n=0
where
o) = =H () exp (-2v3) = H (Vo (V) . (16a)

The Hermite functions (13) are related by the equation

un
) L g (v) (16v)

9. (v) = (-1 .

and the polynomials by the recurrence eqguation

v H(v) = (v) . (16c)

n Hn+ l(V) + an'

1

?he sequence of integrations of Bg. 1 referred to above is
equivalent to introducing Eq. 15 into Eq. 1; because of the orthogonality
of the polynomials with respect to the weighting function wO(V), one
independent equation is obtalned for each function Qn(v). The result is

an infinite system of partial differential equations between the
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coefficients a as functions of z and t and the electromagnetic field.
The latter may be eliminsted simply by the use of Poisson's equation,
if the scope of the analysis 1s limited to plane compressional waves and

the magnetic fileld is taken to be zero or parallel to the z-axis.

40
& EE . p(u,z) du = - Z a_ = Z aeo . (17
oz € ’ € o e oz
o o o o
The symbol
€
-e =fadz = -2F (18)
0 o qg

is more convenient to use in the resulting differential equations than
the integral of a -

Thus the first coefficient in the expansion (15) is proportional
to ‘the charge density in real space. The second coefficient is related
to the convection current density by

400
J o= - g J[ up(u)du = - 908 - (19)

0

The significance of the coefficients a, and as‘will be explored
below in the analysis of particular examples of propagation of compres-
sional waves in an electron gas.

Although only the first three equations in the infinite nonlinear
system obtained above will be used in the subsequent analysis, a brief
discussion of the infinite system is in order. Before any additional
condition such as Eq. 13 is imposed on the gas, the general solution has
an infinite number of independent parameters; this is reasonable, since

arbitrary boundary conditions or initial conditions in p-space can be
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satisfied only by such a solution. However, there may be restrictions

on the ensemble of solutions that can even represent a physical situation.
The condition given by Eq. 13 is too restrictive; other disturbances than
adiabatic ones are certainly conceivable if not indispensable. But

some milder restrictions related to the second law of thermodynamics

mﬁst apply to the whole physical system, including both the electron gas
and 1ts environment.

It is interesting to note that the transport egquation (1) treats
the electron density as a smooth continuous function. Only the ratio of
charge to mass occurs, but no reference to the finite quanta of charge
and mass or to the finite number of degrees of freedom of the gas. The
continuous function is of course a consequence of the fact that the
electron density is a probability density rather than a real discrete
particle density. The parameters of the equilibrium-distribution density
function are functions of the discrete particle dimensions, however, so

that these dimensions do actually implicitly enter the Eq. 1.

III. THE UNLFORM NEUTRALIZED ELECTRON PLASMA

The first case of medium-like propagation to be considered is in
a uniform Maxwellian electron gas at rest. In order to eliminate any
steady electric field it is convenient to postulate simultaneously a
uniform positive gas component of egual charge density but with such a
small charge-to-mass ratio that it may be taken to remain completely at
rest during the transmission of compressiqnal electron waves. This is
the case of a perfect electron plasma, the solution of which has been
extensively studied. It is reviewed here as a simple illustration of the

analytical procedures to be used in this report and for the purpose
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of discussing in more detall a few aspects of the physical phenomena

involved.

The electron distribution density in velocity space is at rest

independent of t and z

2
p {z,n) du a L exp(—% L) %

de
0
= a9 (V)av = - 57 o (v)av (20)
let a small perturbation of Py be denoted by
[+ -]
pl(t,z,u)du = EZ alnwn(v)dv . (21)
n=0

It shall be assumed that the perturbation is so small that the

system of equations obtained from Egs. 1 and 18 by setting

p(u) = p (z,u) +p (t,z,u) (22)

is very nearly linear in terms of the perturbation Py In case of puré
compressional waves a sufficient condition for linearity is that for any
u_ and u

1 ]

u
2 400

Jf pldu << J[ podu . - (23)

u -00
1

If solenoidal disturbances are included a more general criterion

may be borrowed from the scoustics of solids: +he periodic excursions
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of the electrons from their unperturbed paths must be negligible compared
to the wavelength or attenuation length of the vibration.

The infinite system of first-order equations then is

Baelo Ball

= ataz + 0 BZ = O ) (2)‘“.1)
aall 82elo aalg N9, aeoo I
St % 3.2 TE0 TS, —;.delo 5. - (2k.-2)
da, Ball da,
61132 +o 5= + 30 823 = 0 , (2k.3)
da &, da +
Bin +0 gﬁ:l + (n+4l) o ——%%—i = 0 . (2k.n)

The assumpbion of a neutralizing positive space charge leads to

an apparent inconsistency. The symbol

- e = a dz
00 00

from Eq. 18 above has been used as the integral of the electron density,
although the integral of the total charge density is zero. Thus the last
member of Eq. 18 does not apply to the d-c field component, which is zero.
Clearly the system in Eq. 24 is indeterminate, since any n equations
contain n+l dependent variables.
Ilet us now restrict the discussion to adiabatic perturbations.

Then an additional equation may be obtained from Eg, 1l in the previous
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section. It is not necessary to use Eq. 13 here, since the unperturbed
gas has zero mean velocity umc‘and its entropy Seo is inveariant with z.
The entropy and entropy perturbation per electron derived from the velocity

distribution Py and the perturbation 8p are then

N f P (z,u) p (2zu)

S = log du
u oo oo
-0
= -k log V2reo®  for Maxwellien gas (25a)
40
po(z’u) 5p(z,u)
85, = -k f 1 + log — S du |, (25b)
00 00
=00
where
o0
a, = f p(zwdn = N . (26)

Since the number of electrons in the group remains constant during

an adisbatic change of state, 1t is required that

400

d[ gp(z,u)du = O . (27)
—®
The perturbeaocion per unit volume pl(z,u) glven by Eq. 21 obviously cannot
satisfy this requirement. Since infinitesimal readjustment of the average
density affects only the first term in the expansion {21) appreciably,
the variation dp to be used in Bq. 25 is simply the right-hand side of

Eg. 21 with the first term omitted. Consequently
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-]

oo
= - i L2 =
85, = -k ‘jf [l 5 log 2 - SV } }j alnmn(v)dv = ka _ .
00 n=1

(28)

The potential energy assoclated with the z-coordinate of each
electron is much smaller than XT/2; at first sight it may therefore
appear that the z-distribution of the electrons can be neglected in the
computation of the entropy variation. However, the potential fluctuations
represent the only collective and individual interaction in the gas and
are essential to its medium-like properties. TFurthermore, if the dis-
tribution of electrons in space were not random, the potential energy
could easily become very large.

The statistics of the potential fluctuations is not explicitly
needed for the entropy calculation, only the probability density of the
z-coordinates of the electrons or of some equivalent generalized coor-
dinates. It is convenient to choose the differences between the
z-coordinates of neighbor electrons and to assume complete randomness,
i.e., that the number‘of electrons per volume element has a Poisson
distribution. Then this one-dimensional "distance™ ! between electrons

has the probability density

P(2) ar = exp(- £/L) At/ [0 < 1 < w] . (29)

It can easlly be shown by conventional variational procedure that this
probability density maximizes the z-component of the entropy under the
constraint of given expected value of the electron density l/L =8,

Thls entropy component of a group of N electrons is consequently
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=]
NS, = - Nk f Plog Par = Nk log le , (30a)
0

where e 1s the base of the natural logarithms.

The entropy variation due to a perturbation 8P(1)

e8]

Nes, = - Dk ]':l-logL-%:' 8P(1) 4t
0
«©
2 5L 10
= Nk fEBP(l)dl = Nk T = -Nk% = - ka

0
(30b)

The third and fourth members of Eg. 30b express N times Boltzmann's
constant multiplied by the variastion of the expected value of the one-
dimensional electron "distance", divided by the unperturbed mean distance
L. The fifth member follows from the fact that an infinitesimal increase
in the relative mean distance in one dimension is identical to the
decrease in the relative electron density 1f the density is invariant
in the two orthogonal dimensions.

The total entropy per electron in one dimension of a Maxwellian
electron gas with a Polsson distribution in space is obtained from

Eqs. 25a and 30a.

k log ~N2nweo? + k log (eL)

0
il
1033
o
+
(95
121
]

1

k log (oL) + constant

i}

k log gg;-> + constant . (31a)
0o
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Consequently an adisbatic change of state requires that

ya

2

é%— = %? ﬁﬂ = constant (31b)
oo

where VN is the volume occupied by N electrons and T is the absolute
temperature. In this relation the pressure mey be introduced in order

to permit a comparison with the gas laws:

«®
P = 2 \jr muRp{u)du = mo? a = xp (32)
00 VN
0

giving the result

o Vﬁ = constant (31c)

which is to be compared with the classical relation for adiabatic varia-
tions
7e
pVy = comstant , (31d)
where 7e is the ratio of the specific heat at constant pressure to thsat
at constant volume. That this ratio is equal to 3 under conditions
where a single degree of freedom per gas particle is involved is well
known.
The general result for a small adiabatic perturbation in &

uniform electron gas at rest is according to Egs. 25b and 30b.

0 = N(zssu +88 ) = 1«:(em12 —alo) (32a)

or

a, = & . (33b)

10
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From Egs. 24.1 and 24.3 it is found that Eg. 3%b is equivalent %o

(33c)

In the previous report* the condition 8ig = 0 for medium-like
propagation in a uniform equilibrium electron gas was derived from the
postulate that the perturbation power flow be expressible as the product
of the perturbation convection-current density and an equivalent pertur-
bation potential. The consistent results obtained from radically
different postulates suggest that either one approach may be used alter-
natively whichever one happens to be more convenient in each particular
case. For this reason the essential points of the equivalent-potential
approach shall be reviewed.

The general definition of equivalent potential is obtained from

the power flow, Eg. T

o0 4o
1
5 Mo J[ wdp(u,z)du = V J[ —qeup(u,z)du . | (3k4)

—~0 ~
For unperturbed equilibrium conditions both integrals are zero, and V
appears indeterminate, but if the whole velocity distribution is displaced
by & small velocity Au, V(Au) is a conbinuous function of Au and approaches
a limit as Au approaches zero. In this way the unperturbed equivalent

potential, or "kinetic potentiasl" is found to be
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The first-order perturbation of the power flow mey be written

L 3 ) -
5, k/F u pl(u,a) w = VI +VI . (36)

Since JO 1s equal to zero, Vl can be a small perturbation only if

-0
in, [0 -aww o) an = o0 (57)
or
oo
ng f (v®-2v) p(ov) dv = &, = 0 . (38)

In the present case, where the system of differential equations
is linear with constant coefficients, all solutions are linear combina-
tions of exponentials in z; consequently Bgs. 38 and 33 are identicel.

The solutions describing the adiabatic propagation of disturbances
in the electron gas is now readily determined by applying the condition
of Egs. 38 or 32 to the system of linear differential equations (2h),
which is homogeneous with constant coefficients. The first Eq. 2ka can
be integrated directly with respect to z; the constant of integration
may be temporarily omitted, since it would meke the system nonhomogenous.
For perturbation with a time variation of exp (Jjwt) the Sturmian form

is obtained Dby proper algebraic operations:

; (39a)

[
]
I
afg
[+

12

E’alz jo f;

gji
i
!
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where

B = - —2 =22 _ &4 ) (40)

In terms of the convection-current density Il and the equivalent

potential Vl

I = -9 , (k1a)
2 a

v, = _2& 22, (41b)
L

the result may be considered to express the propagation on an eyuivalent

transmission line or waveguide,

aIl 2qeaoo
T M C - A (h2a)
e
avl
W = —ZIl = 2\12& < <l|-2b)
e 00

the propagetion constant and characteristic impedance, respectively,

being given by the relations

¥2 = - 7Y Q—2—<1 -£> (43a)
(1)2 2

(43p)
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From (43a) the phase velocity u, and the group velocity U

respectively, of the plane-wave solutions of Egs., 39a and 39b are obtained

@R 1/2

N N <1 i ﬁ) , (4ha)
w2 1/2

u, = g—‘;’ = J302< a—ﬁ | } (4bb)

The phase velocity approaches infinity and the group velocity
zero as the frequency approaches a$. The square root of the product of
phase and group velocities is a characteristic of the gas which has

similaxr form to the velocity of sound in a pure neutral gas

u = M ) (1{5)

where e is the ratio of specific heats and M the molecular mass. In

comparison
'Jupug = %%2 (46)
e

for the electron gas. The appearances of the factor of 3 instead of e
in this expression is consistent with the relations for adisbatic
expansion, Egs. 3lc and 31d.

If the unperturbed velocity distribution is not Maxwellian, the
transport equation still holds, but the adiabatic condition in Eq. 32
will in general change. An estimate of the entropy variation BSu of the
velocity distributlon may be obtained by introducing the expansions in

Hermite functions (Bq. 15) for Po and dp. Since the second and third
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coefficients a01 and ao2 are made equal to zero by choice of reference
frame and normalization, the first and probably largest nonequilibrium
component is 8o let us first evaluate BSu for the case that aos/aoo
is a first-order small quantity and that all higher-order components are

negligible. Then the veloclty entropy variation is

88, = - Ef; —;7? {i + log [mo(v) + ;93 @3(V)} } j{: alnmn(v)dv

00 n=l

400 P
\j( {i + log wo(v) + log [l + 299 HS(V)} }- i;1 &ln¢n(v)dv

(e]e]

-
80
~00 n=l

e]e]

')
mlw
éc\‘“?

1 1 Boa N
{.5 log 2me + 5 Hz(v) - g;;Hs(v)}- E: alnwn(v)dv
n=1 .

ale Foz M13
= 2 _ z¢ 023 13
Z ox [ 2 30 =2 ] . (50)
folo) oo
Consequently the conditions a _ = O and a._ = a__ are still com-
13 12 10

patible at least to the first oxrder, and the previous results apply also
to this case. TFor larger deviations from a Maxwellian distribution the
adiabatic condition appears to become considerably more complicated.

In the equivalent-potential model, the unperturbed kinetic
potential appeers to be infinite, according to Ey. 34, when 303 is not
zero in the reference frame where a.. is gzero. This ig physically
unreasonable and it suggests very strongly that the general representa-
tion of the electro-kinetic power flow as the product of an equivalent

potential and the convection-current density breaks down under these
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circumstances. However, the entropy relations Just presented seem to
indicate that the adisbatic solution can be found by disregarding the
third velocity moment, since it neither contributes to nor obstructs the
medium-like behavio£ of the gas. In other words, the unperturbed poten-
tial VO may be taken from Ey. 35 even when the unperturbed distribution
differs somewhat from a Maxwellian distribution. Also the pexturbation
potential Vl is then obtained as before from the condition 8., = 0, in
full agreement with the constant-entropy approach.

The criteria of finite VO and small Vl thus appears to offer an
equivalent alternative to the adiabatic condition for finding medium-like
solutions in an electron gas. The next section of this report will dis-
cuss a case of a nonuniform electron gas in which it can be established
that the constant-entropy approach and the equivalent-potential approach

lead to exactly the same set of differential equations.

Iv. ELECTRON GAS IN EQUILIBRIUM WITH ONE O O PILANE EMITTERS

4.1 The Unperturbed State

The heavy positive fluid postulated in the previous case is
eliminated in the present problem; conditions of statistical equilibrium
are still assumed. There is a net negative space charge and a d-c elec-
tric field, both varying in one dimension only, i.e., the z-dimension.
The average net current density is zero everywhere, and the electron
velocity distribution is Maxwellian with a temperature equal to the
temperature T of the plane electron emitters at 2, and z2 (Fig. 1). The
unperturbed stame of the gas is determined from the time-invariant
components of the variables in Boltzmann's transport equation (l) and

Poisson's Tq. 17
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po(z,u) du = aoo(z)¢o(u/c) au/o , (51)

:—:-Eu) C e (1) (50)

giving the two equations

da
_5%2 2k 8 = 0 (53)
Beoo
T Taz T %o (54)

where the only remeining parameter is

e 0 (
6 =
2¢ o2 55)
o]
Elimination of aoo leads to the equation
aeeoo aeoo azeoo d
5z2 T 3 T 522 t9% (e§o> =0 . (36)
After one integration and separation of the varisbles, the
results are, respectively,
aeoo
>, t 0 (e +C3) = o0 (572)
and
de d(e_ /c.)
09 = L " oo” 27 = - @dz . (57b)

2 o2 E
eZ +C2 c. (eoo/cx) +1
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Depending on the value of the integration constant Cf, three

different types of solutions may be obtained. The simplest form results

if
Cf = 0 . (58a)
Then
e = = (58D)
00 oz ’
1
%0 = o8 (58c)
The second integration constant determines the origin on the
z-axis. This constant is zero, if the origin 1s chosen at the plane where

an emitter of infinite electron density would be located.

Both €0 and &, are in this case monotone decreasing functions

of z. The intermediate curve in Fig. 1 indicates qualitatively the varia-

tion of the electron density.
In the case

€2 > 0 (59a)

the corresponding integrals are

1 -1 < eo L /x
= tan -—-> = -0z +C = ——-<; - g%> s (591)
c . 2 - 0 \2
e = C, cot gz (59¢)
Clg_
= ’ (59d)

a —5
ole sin“ gz
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where
qencl

& = GC = >
2600

1

(5%)

where the second integration constant has been chosen so that the origin
of z may be located as in the first solution. 1In this case the electron
density has a minimum, as indicated by the top curve in Fig. 1. The

location of this minimum is

Ymin T 2g - (591)
A second singularity occurs at
I
2200 =g (59g)

which is the location of the right-hand emitter, if its electron density
is infinite.

If, finally,

2 . .2
c2 = c2 < o0 , (60a)
the results are
e,, = C,cothegz , (60b)
a = CL (600)
00 sinh® gz’
where now
a,nC
e''’3
= 60 = 604
g s e o2 (60d)

The electron density is a monotone decressing function, indicated
by the bottom curve in Fig. 1.

Which one of these three different charge distributions is appli-

cable in a particular situation may be determined from appropriate boundary




conditions at the emitters. At a given emitter temperature and given
emitter density aoo(zl) on the left there are three parameters, only
two of which may be chosen independently, if equilibrium is to be main-
tained. These parsmeters are: (1) the distance between emitters

Z, " 2%y, (2) the ratio of the electron densities at the emitters
aoo(zz)/aoo(zl), and (3) the potential difference between the emitters.
For a given interemitter distance there is only one value of aoo(zz)
that will result in the first case described by the Eq. 58. A better
right -hand emitter gives conditions described by Eq. 59, and a poorer
right -hand emitter leads to the state in Eg. 60.

The first state may be generated by removing the right-hand
emitter to infinity letting the left-hand emitter reach an equilibrium
condition in relation to its own emission into semi-infinite space.
Insertion of a second emitter which increases the electron density gives
the "supersaturated' state of Bq. 59, while a second emitter which
decreases the density gives the "unsaturated" state of Bq. 60. In each
case the emitters are insulated, so that they assume the potential
difference required to make the average current zero. It may be noted
that the distinction between the supersaturated and unssturated states is
not in general the same as the distinction between space-charge-limited
and temperature-limited operation of the right-hand emitter (the lower-
potential or lower-emission electrode). These criteria coincide only in
the 1limit as the position of the right-hand emitter approaches infinity,
z, . For the case Cf > 0 the right-hand emitter will operate

temperature-limited, if it is placed between the density minimum and the

left-hand emitter.
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4.2 Propagation of Perturbations

The first-order perturbation equations derived from Egs. 1 and
17 differ from the system of Eq. 24 in two respects. Since the d-c
electric field is not zero, another term will appear in the second equa-
tion. Furthermore, the system of equations now has variable coefficients,
since both e and de  /dz are functions of z.

The first-order system of equations is

aaelo Ball

"SRt - 0 (61a)
aall 62elo 8&12 aeoo aelO
5t "% o2 * 20 Dz 206 (elo 2z T Coo _SE€> = 0 , (61p)

da da
12

11 13 _
St T0 TS, 3g St eceeooall = 0 . (61c)

The first equation is the same as Eg. 24ka and can be integrated

directly. Like the system Eqgs. 24, Eg. 61 has too many dependent var-
; lables to be determinate, The velocity distribution is still Maxwellian
everywhere. The distribution of electrons with z is not invariant with
z; however, at any fixed z the random distribution of the interelectron
distance may still be assumed to have the form of Eg. 29, so that the
entropy component Sr from Eq. 30a applies also in the present case.
However, tﬁe mean distance L and the electron density are functions of z;

! consequently the adlabatic condition must be derived from Eq. 13. The
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mean unperturbed velocity Uom is still zero; so is the space variation

of the veloclty entropy suof But the mean velocity perturbation is

oa .
= (62)
im a
00
and
da
ro _ .1 oL _ 1 oo
z ~ FT &% < k3 3z (63)
00
If common factors k, N, l/a.Oo are omitted, Eq. 13 gives the
relation
0 = 0 (a. -8 ) -8 Baoo L
T ot Ve 10 11 oz 80

(64)

This equation can alternatively be obtained from Eg. 6la and 6lc
by setting Bala/dz = 0, in accord with the equivalent-potential approach.
If e, is eliminated between Egs. 61 and 64, the result may be

written as a palr of transmission-line equations:

1
- fa T Ba, , (658)

3%&12 = -350 oo< > —JX< > (65v)

Since (BX)*/2 is constant but (X/B)l/2 = aoo(z) varies with z, the

N 0/
N
OSDIPQ)
o |~
N

!

]

.
ale

propagation of plane compressional waves in the equilibrium electron gas

is analogous to the transmission of TEM-waves along a coaxial line with
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constant (pe)l/2 but a tapered characteristic impedance. This analogy

suggests that there may be solutions of the form

a,, = h(z) exp (-jrz) , (66)

12
where h(z) 1s real and y is a constant.

It all/aoo is eliminated between Egs. 65 and the trial solution
of Eq. 66 is substituted into the resulting second-order differential
equation,

O2g

32 & 2 3z T3 e T O

iz _ 1 aaoo aalz‘ w2 (67)

the following pair of equations are obtained by omitting common factors

and separating real and imaginaxry terms

da
o%h 1 o oh w2
a_‘rT$<7fc_ o= 0, (68e)
da
2%_.—8.1 Zoh = 0 . (68b)
oo 3

The second equation is separable and mey be integrated directly

h = C4~Jaoo = C, exp <- 2] kjreoodz:> s (69)

the last alternative being obtained from Eg. 53. Substitution of this
solution into Eq. 68a yields the remaining unknown parameter y and proves

that Eq. 66 is indeed the solution of Eq, 67.
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2
- ge2 L . . = 2. 8%) _ p2p2
T oe } be " 20e = (7 352) = e2c2 . (70)

After reduction of the first member, the last member follows from Egq. 57a.
The integration constant Cf 1s the same constant the value of which
differentiates between the three different d-c charge distributions dis-

cussed earlier. Consequently 7y is a constant given by the equation

' w2 1/2
y = % 3—0-2+e202>
w? \1/2
- 2 (1-—9> : (71)
o3 w2

where the critical.frequency

e
]

V3 (- e202)H/2

{3”% < 4 Ge? > } 1/2

Eeo 00

57](1@ 1 a&oo 2 7 1/2
{Zelowrme ()7

The perturbation of the convection-current density and of the

electron density, respectively, may be calculated from 8, by reference

to the Bgs. 65b, 67 and 6la. The results are

a = c4~JaOO exp (-jrz) , (73)

12




10

da_

_ _ g 12

=T 0%y, = 0% Jo oz

302C4 1 Baoo
= -dwa, 57 Veg, {'Qa S, - 37}~exp (-37z) , (14)
00
da 02a,

o 11 _ 302 12

T 9z T w2 z2

30@04

‘ 1 a8‘00 . 1 aa'oo w2
va {('—*— >z ) "V & T'gc—z'}eXP(‘MZ)
o) 00
(75)

In the three different types of equilibrium states derived earlier,

these relations take the specific form given below:

Cf = 0
A
1
a, = —z-exp(-jyz) 5 (76)
. Al
T o= Jeq, 3z (1 + 3ryz) exp (-jrz) , (77
A
oo = 35,3 (L2 - 7% exe (-ir2) (78)
0.)2
7® = 3E - (79)
c2 >0
A
a,, = ﬁ;exp (-3rz) (80)
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A
T = Joq, s (g cos gz + )y singz) exp (-yyz) ,  (81)
A
80 ° ;EB‘ZEZ‘ (g2 + Jyg cos gz sin gz - 72 sin? gz) exp (-Jrz) ,
(82)
2
72 = ébg—g +g2 , (83)
g2 = ech > 0 ~(8k)
2
3. 02 < 0
3
82 7 sinh gz % (-372) (85)
J = Jwag §E££§_§Z (g cosh gz + jy sinh gz) exp (~jyz) , (86)
Ay
%10 T sioh® g2 (g2 + Jyg cosh gz sinh yz - 72 sinh? gz) exp (-jyz) ,
(87)
2 - B _ 2 _ B 1 - fé (88)
7T % 352" 8 302 w2 ’
2 202 _ - 2n2 )
g% = 6%Z = -06%2 > 0 (89)

The last case, the unsaturated state, has the greatest significance

of the three, since Eg. 88 indicates that the phase velocity becomes

infinite at
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w=w.. Consequently a frequency range exists, where the phase velocity
is much larger than the thermal electron velocities and the Landau demping
is negligible. In other words, the vibrations are adiabatic and the solu-
tions found are in this range consistent with the assumption of constant
entropy. The factor g appearing in the hyperbolic functions is not an
attenuation constant; these functions describe the varying wave impedance
of the electron gas, not an attenuation of the power propagated by the
waves; that this power is conserved, (i.e., invariant with z) can easily
be verified by calculation of the power flow as the real part of the
product of alz/aoo and the complex conjugate of a,, multiplied by an
appropriate real constant.

The results in Case 3 above thus show a striking similarity to
those for the uniform neutral plasma in Section IITI. Equation 88 is

exactly the same as Eq. 43a. Despite the widely varying electron density

g_"plasma resonance frequency" or low-frequency cutoff frequency w,>

invariant with the space coordinates, exists in the electron gas, related

gradient as expressed by Eq. T2.

Tor the other two cases, the saturated and supersaturated states
of an electron gas in equilibrium, the results of this investigation are
largely of a negative character, but nonetheless of considerable interest.

No plasma resonance or cutoff frequency exists in these cases. The

phase velocity of the postulated adiabatic waves is equal to or smaller
than the mean square electron veloclty. Waves of such velocities are

subject to heavy Landau damping; in other words, the solutions have no
other physical significance than the demonstration that no even approx-

imately adiabatic waves exist in an electron gas under these conditions.
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The gas does not show the properties of an elastic medium but rather
those of an extremely viscous ligquld. Time and space correlations of
fluctuations in the gas are very short. Any disturbance from an externsl
source is rapidly attenuated. Noise is absorbed and emitted at equal
rates, so that the noise level is maintained at that of equilibrium

thermal noise at the temperature of the gas.

V. EXTENSION OF THE ADIABATIC-PERTURBATION INVESTIGATION

TO ACCELERATED FLOW

In an electron gun the electron ges is in a state of flow, which
is very different from the equilibrium states analyzed in previous sections
of this report. The intuitive understanding and the mathematical analysis
of noise transport or propagation in an electron gun would be considerably
facilitated if the adiabatic triasl-and-error approach that worked so well
in the equilibrium gas could produce analogous closed-form solutions for
accelerated flow, so that the existence of a plasma resonance freguency
and medium-like wave propagation could be proved or disproved under
various operating conditions.or in various regilons of the electron gun.

A certain amount of progress has been made along this path, but
closed-form expressions for the adiabatic solutions corresponding to
Egs. 76 to 89 have not yet béen‘found. The increased difficulties are
of course connected with the fact that the mean velocity and acceleration
are no more zero and the velocity variance (or the "temperature") no more
constant throughout the gas. The expansion of the unperturbed flow is
not completely reversible, i.e., adiabatic, everywhere, because of the
sorting of the electrons into one class that passes the potential minimum

and another class that does not. Past the potential minimum the expansion
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becomes reversible, as long as the gas is not compressed beyond the
density at the potential minimum, i.e., again reaches a potential as low
as the potential at the minimum.

The electron distribution in velocity space 1s now expressed in

Hermite functions of the velocity variable

where umo is the mean unperturbed velocity and o2 is the variance of the
velocity in the unperturbed state. Both umo and o are functions of z.

The first-order perturbation equations obtained from Boltzmann's
and Poisson's equatl ons, combined with the condition for adiabatic

perturbations, can be brought to the form of a pair of transmission-line

equations
g% = 'jX(Z)I )
Lo -

where V and I are functions of the coefficients alo, all, alz and the
parameters of the unperturbed stream; X and B are real functions of the
latter.

No closed-form solution of this system of equations has been found
as yet. Already the unperturbed state is of a rather complicated trans-
cendental nature for space-charge-limited flow in an electron gun.
Without such a solution it is difficult to ascertain whether or not a
cutoff frequency or plasma resonance frequency exists, and if so, how

it varies with the different parameters of the gun. The final condition

in a beam, drifting at high velocity in an approximately field-free space,
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is well established: here a plasma resonance frequency exlsts, and the %
magnltude of the nolse power in the two waves running in opposite direc-

tions in relation to the mean electron velocity is not very different.

But 1t appears likely that the medium-like solutions for noise propagation

in the preceding accelerated region, 1f they can be found, would lead to

a better understanding of the factors that determine the noise level in

a beam and the noilse factor in klystrons and traveling-wave tubes.

The discussion of the invalidation of some of the adiabatic
solutions by Landau damping is somewhat different in the case of accel-
erated flow in comparison with the equilibrium states. The perturbation
generally produces irreversible changes in the velocity distribution
when a significant number of electrons move with velocitiles equal to or
nearly equal to the phase velocity of the wave. In the electron gun the
Maxwellian veloclty distribution is incomplete, because of the fraction
of electraons incapable of passing the potential minimum; consequently
waves with phase velocities dn this missing range can be expected to have
no Landau damping. In this case, therefore, adiabatic solutions may have
physical significance, even if their phase velocity is in the thermal

range relative to the mean velocity of the electrons.

VI. CONCLUSIONS

The postulate of the existence of adiabatic perturbations traveling
as plane compressional waves through an electron gas has produced solutions
of Polsson's equation and Boltzmeann's transport equation, from which some
interesting conclusions can be drawn. In an electron gas at equilibrium
between two plane infinite emitters of the same temperature but different

emissivity the result was founrd consistent with the condition of negligible
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Landau damping, if the gas was unsaturated, i.e., if one of the emitters
was operated strongly temperature-limited. In this case a plasma reso-
nance frequency exists, which is independent of the space coordinates,
desplte wide variations of the electron density with distance from the
emitters. Under all other equilibrium conditions no such plasma
resonance frequency exists, and Landau damping will strongly impair all
medium-like behavior of the gas in response to compressional disturbances.
Corresponding analysis of an electron gas under condition of
accelerated flow has made some progress but no final conclusions have yet

been obtained.




LIST OF REFERENCES

Landau, L., "On the Vibrations of the Electron Plasma", Jour. of

Physics, USSR, vol. 10; 1946, .
Bohm, D., Gross, E. P., "Theory of Plasma Oscillations", Physical

Review, vol. 75; June 15, 1949.

Bernstein, I., "Waves in a Plasma in a Magnetic Field", Physical

Review, vol. 100, No. 1; January, 1958.

Hok, G., "Conservation Principles in Multivelocity Electron Flow",

Technical Report No. 45, Electron Physics Laboratory, Department of !
Electrical Engineering, The University of Michigan; June, 1961.

Hok, G., "Conservation Principles in Multivelocity Flow", Trans.

IRE-PGED, vol. ED-8, No. 8, pp. 452-461; November, 1961.

=41- i



No. Copies

7

30

DISTRIBUTION LIST

Agency

Aeronautical Systems Division, Attn: ASRNET-1, Wright-
Patterson Air Force Base, Ohio

Air Force Cambridge Research Laboratories, Attn: Tube
Group, L. G. Hanscom Field, Bedford, Massachusetts

Chief, Bureau of Ships, Code 691Ak, Attn: Mr. H. J. Riegger,
Department of the Navy, Washington 25, D. C.

Chief, Bureau of Ships, Attn: Mr. Charles Walker, Depart-
ment of the Navy, Washington 25, D. C.

Commanding Officer, Diamond Ordnance Fuze laboratories,
Attn: Microwave Tube Branch, Washington 25, D. C.

Electronic Systems Division, Attn: ESRDE, Major J. W.
Van Horn, L. G. Hanscom Field, Bedford, Massachusetts

Rome Air Development Center, Attn: RALTP, Mr. H. Chiosa,
Griffiss Air Force Base, New York

Commanding Officer, USAERDL, Attn: Mr. Harold J. Hersh,
SIGRA/SL-PRM, Ft. Monmouth, New Jersey

Commanding Officer, USAFRDL, Attn: Mr. Irving Reingold,
Microwave Tubes Branch, Ft. Monmouth, New Jersey

Commanding Officer, U. S. Naval Ordnance Laboratory, Attn:
Miss Virginia L. Parker, Corona, California

ASTIA (TISIA), Arlington Hall Station, Arlington 12,
Virginia

Advisory Group on Electron Devices, Attn: Mr. H. N. Serig,
346 Broadwsy, 8th Floor, New York 13, New York

Bendix Corporation, Systems Planning Division, Ann Arbor,
Michigan, Attn: Technical Library

Mr. A. G. Pelfer, Bendix Corporation, Research Leboratories,
Northwestern Hwy. & lO-l/E‘Mile Rd., Detroit 35, Michigan

Bendix Corporation, Research Laboratories, Northwestern Hwy.
& 10-1/2 Mile Rd., Detroit 35, Michigan, Attn: Technical
Libraxy

California Institute of Technology, Department of Electrical
Engineering, Pasadena, California, Attn: Professor R. Gould




B i ame s

No. Coples

1

Agency

Dr. Om P. Gandhi, Central Electronics Engineering Research
Institute, Pilani, Rajasthan, India

Dr. Peter T. Kirstein, CERN, European Organization for
Nuclear Research, Geneve 23, Switzerland

Cornell University, Department of Electrical Engineering,
Ithaca, New York, Attn: Professor L. Eastman

Dr. Rajindar P. Wadhwa, Electron Tube Division, Litton
Industries, 960 Industrial Way, San Carlos, California

Dr. G. Branch, General Electric Research Laboratories,
Schenectady, New York

General Electric Company, Electron Tube Division of Research
Laboratory, Schenectady, New York, Attn: Dr. E. D. McArthur

Dr. David C. Prince, Jr., General Electric Company, Flight
Propulsion Laboratory Department, Cincinnati 15, Ohio

General Electric Microwave Laboratory, 601 California Avenue,
Palo Alto, California, Attn: Mr. S. Webber

Dr. Xurt Amboss, Hughes Research Laboratories, Malibu,
California

Dr. George R. Brewer, Electron Tube Laboratory, Hughes Research
Laboratories, Malibu, Californie

Hughes Aircraft Company, Florence and Teals, Culver City,
Califernia, Attn: Mr. Nicholas E. Devereux, Technical
Document Center

University of Illinois, Department of Electrical Engineering,
Urbana, Illinois, Attn: Professor Paul D. Coleman

Dr. J. R. Hechtel, Litton Electron Tube Corporation, 960
Industrial Road, San Carlos, Californis

Litton Industries, 960 Industrial Way, San darlos, California,
Attn: Dr. Joseph Hull

Massachusetts Institute of Technology, Research Laboratory
of Electronics, Cambridge 39, Massachusetts, Attn: Documents
Library

Microwave Electronics Corporation, 4061 Transport Street,
Palo Alto, California, Attn: Dr. S. F. XKaisel




No. Copies Agency

1 Microwave Assoclates, Attn: Dr. P. Chorney, Burlington,
Massachusetts

1 University of Minnesota, Department of Electrical Engineering,
Minneapolis, Minnesota, Attn: Dr. W. G. Shepherd

1 Polytechnic Institute of Brooklyn, Documents Library,
Brooklyn, New York

1 Raytheon Compsany, Spencer Laboratory, Burlington, Massachu-
setts, Attn: Mr. W. Teich

1 RCA Iaboratories, Princeton, New Jersey, Attn: Library

1 Sperry Corporation, Electronic Tube Division, Gainesville,

Floride, Attn: ILibrary

1 Sperry Gyroscope Company, Great Neck, New York, Attn:
Engineering Library

1 Dr. A. D. Sutherland, Sperry Electronic Tube Division,
Galinesville, Florida

1 Stanford University, Microwave Laboratory, Stanford, Cali-
fornia, Attn: Dr. M. Chodorow

1 Dr. XK. J. Harker, Stanford University, W. W. Hansen Labora-
tories of Physics, Stanford, California

1 Stanford University, Electronics Laboratories, Stanford,
Celifornia, Attn: Dr. A. E. Siegman

1 Sylvanie Microwave Tube Laboratory, 500 Evelyn Avenue,
Mountain View, California, Attn: Dr. J. Needle

1 Sylvenia Electric Products Inc., Applled Research Iaboratory,
40 Sylvan Rosd, Waltham 54, Massachusetts, Attn: Mrs. Mary
E. Bufka, Librarian

1 Varian Associates, 611 Hansen Way, Palo Alto, California,
Attn: Technical Library

1 Watkins-Johnson Compeny, 3333 Hillview Avenue, Palo Alto,
California, Attn: Dr. D. A. Watkins

1 Mr. Gerald Klein, Manager, Microwave Tubes Section, Applied
Research Department, Westinghouse Electric Corporation,
Box Th6, Baltimore 3, Maryland




No. Coples

1

62

Agency

Westinghouse Electric Corporation, P. 0. 284, Elmira,
New York, Attn: Mr. Daniel Buck

The University of Michigan, Office of Research Administration,
Mortimer E. Cooley Bullding, Ann Arbor, Michigan, Attn:
ProJject Files

The University of Michigan, Electron Physics Laboratory,
3505 East Engineering Building, Ann Arbor, Michigan




I —— _— T - — T S S
i
*PUnoy BIIq . TPENOF Tadq
334 30U 2A¥Y TOTIENDI JAWA DTIRQETPE I3 JO FDOTANTOS MIOF-PRECTO 93K 307 AWy WOT4WNba AWM OTIWGETPE I3 JO FUOTIN[OF WICT-PISOTT
Foppoodsarios ang ‘ssaxdord uT 87 Acry PARWIITIOOE JO SR8 FuTPoodeA1100 g ‘esarBord UT ST AOTI DPIRIITIONM JO s94e3s
03 STELLWO 573 JO WOYIURIXD IQL  *IOTARGQ ATL-ETPIR TWAL 03 STSATOUN STY3 JO VOTSUILXD FqI,  IOTAWHH STY-mnTpaE Twal
oz ATTWOTIOWIA AOTS $23938 38aq3 FIpIOA II30 UL 397X notawded ou A[[PoT30%ad ACUS 523938 ISA]3 ‘eploa IQI0 T °351x9 mojjwied
QILITSSYIONT ) puw X3 waswrd AQITIISSYIORN .

‘9 ‘Yog
ACTI PIRWIIINY
03 TOTIW39UTT TOTIRGIMITAL

-

-oad STWQETDY AT
¥ Qans ssop 1 p

oy X0 . ‘993MT I9h30 on uf

. . TSI933TED 3 UIAM3aq LpTA

3TIMA L373U9D DOXOITH ;Y 393 377 o) 937deep ‘wed oy Uy
AIGaLIAAS JUWIIN00 Iq O3 PUTOF ST Kouanbaxy aouwnosar waeerd Iy
cxed 03 UT PIITT OTIIIILA O-p Iq3 I0OF WOTAsAIAXS Q3 UT Joeys
~DOd DOTIRIIIINT UR O ITwA I3 AQ PITITOads Arastoard sy sed
Q3 IO 93938 PNWINWITU, FIRL  PIFTETT-amyusadmes Arfuodye
Fopimzado ST KII3ITEE 3q3 JO U0 JT AT 2I9337me sawyd IATHTIUT
T3 LINTDO SUOTITPUCD ISIQY 339 03 PIXFrbar Louanbary yyoznd
£: J-MOT 20 K: axz wrew(d 993 3wq3 pUTO ST 31

*Fupdmep repawy arqETIIav

03 WOOFITLROD Q3 AIFTRS £33 JT LU0 TRITITATS Arreorsind
¢ PAfaddw UIG) AXW FOTINCOS I3 LPINTNIsed ATSATINITY

ATV FROTSFIIIMD OTINQUIPE ‘vl TRInau v oy uoyywdwdoxd
STIIMOVE WITA LIOTWUE ny 83933790 uwrd 0% I0 WO YiTh
ENIIQTTITD3 UT 393 DoIyoers e uy wojiwiedoxd IATT-UNTpIE I3
TETROTAIM T SIApTROoD 4Xodar 13 ‘e DoxyoITR mxoFTUTIION W

‘p 'xog *

AOTJ PIJRIITIBTY
03 DOTINETIAANT UOTIRGINIIAL

-oxd 3y3equIp Arejwwrxodde
® yong #30p ‘P . 20

o3 Pow Ir weserd
.

©SI233THI 3 T3 ATIpn

SILIRA £37FUIP WOIIDITA Iq3 393 30T 963 I37dsIp swd a3 T
AIMALIING JUNSTOD I OF PANOF ST Lomerbaly somwnosar wwswid Iy
*owd 03 T PTITF ITIIHITI O-P 3 107 DOTEsaxdx3 ¥y UL 3UNIS
~U0d BOTIRIFIIINT TR JO InTwA I} Lq parsToads Lyaetoard sy sed
I3 JO ,I393T pRIWIMISNTN,, STUL  ‘pIFIRT[-amyssaduag KpSoiss
Bupjwrado 4y 32933782 03 JO IO JT LTDO SI43TER IOW[E RTEITT
TIIMLIQ SINH00 SWTITEUOD #8G] 399m 03 PAIFrbar Lsusmbaly yyoand
£ J~A0T IO £ 94 wase(d 943 WY} PUNOZ ST 3T

- Sopdowp nepowy FTQTRTIRGT

03 FUOTITPUOD A3 AI8Yqws £33 JT AT00 IOEOTITCRYS A[TeoTsAgs
s% pdo0dw TX3 ATW SUOTINIOS a3 LpAREINyOd ATAAT3erue

e SUOTIIALImOD STIWQYIPE ‘wed TeIqneu ® UT woTyw@edoxd
OF3MOW G3TA LJOTRTw TI  °8I337m9 FeTd Gn3 10 WO YITA
=TIQTLTbe Uy #8% woxoers Uw UT vopjededoxd IXTT-MnTpAE w3
JWTNOTIIed BT SIIPTIIOD 4104l KU ‘red DOI3OITP AXOFTUNDOC ¥

=JTINQITPY A3} 30 WOTITF -y TT SANA TR0 9SAIINOD Aq INTOT JO 3TodsUex; pow mojsededoad jo ~OTIWQETLY Fq3 JO LOTNUAIXT  Cq TY $aswa TWDOTSIAIAIOD Lq 38T0U 30 3xodywmig pow DoTiwiedoad jJo
MIITRE FW[J OAL, IO U0 L2033 Te19Te% 202 ® Jo quemdoTandp a3 Uy 4939 JEITF ¥ FY 2X9337HI JUWL OAL IO ;O £309q3 TeI3038 ax0w v Jo jusmioraasp a3 uT N 4RITI ® Sy
TIFA WRLIGTTIREY T %) WAIJONI ¢ Y43TA TnIIQITITEE UT ¥99) mox0ard  "§
heabd 8 {€095Tx “oN Xwey ‘oCgy -oN -foxg) houdd G4 (095Ty "OoN A¥eT ‘oLgy ok *foIz)
DOIIIITE PITFIVIGNIY WIOITH) IWqE 2 SSRITT 19UT & Ty ‘(96T ‘UOIMM  *X0T *D £q ‘SYD NOWIOTIE TAIIDITE PITFTWIININ WIOITU) ML ' “SRTTT “TITF *&d T ‘(96T ‘UOIwK “XOE "D Q. ‘SYD NOMILOETE
ATPINIE JO FEOAINIKON ¥ KT NOLLYIVAOHS SSION “weRppyR (oqIy wuy WINPINOIZ JO YHEDAINANON ¥ NI NOIIVOV4OUd ETON “TWITIOTN ‘I0qIy TIy
UTLING TUW $3WNI0L TRITIAOMT T £203930qW] 80784TI WOIIOITT ‘WATIOVK Jo AITRISATER FTL JTYIINO DU $ARFINIS0L TEITIANOFML ‘T fAr03w10qw] E3TRARs DOILOITE OWBTGOTM 3O A3THaATmn WML
w QETATSSYION av TELIISSYIONR a¥
“PTmoF uIaq pUNOZ TR
334 300 JATY UOTWNDI IABA DTJWQETPE IQF 3O MOTIN[ON HIOF-PISITD 334 30T AW oLTIWNEI IAWA STIBQETPE I3 O STOTIN[OF MIOF-PISCTI
FTpuodSALIos gnq ‘ssardozd Tl ST AOTI PIJRIFTIION JO S493S 200 gnq £ TF ST AOTS PIIMIITI00E JO SWIE
O3 STHL[EUN §TQ3 3O DOTITNXI L -IOTAWGRQ SXF-SIPIE TRX 03 FYSATWUR FIY3 JO VOTEIGXD L ~IOTARGHq IATI-ENFpIA TEAT
ou ATWo135%d AoUS 593938 3933 SEPIOA IIGI0 T CISTXD moYjeded 0T ATT®533082d AOTS 333W38 81} FSpIoa JaI0 TI  IFEXS DoTsvEed
CATLISSYIONN ~0Id DTIWITPY LY 03 pow £ axy wersTd QAILISSYINN ~03d SY4wqETEe AT 3 pUe L a1z waweyd
% Gons $a0p ~.. , X0 , “333w3s 19930 ou UL ® gomns $30p n.. 8, 0 D ' ‘gawlg X930 OU WL
TRIITEN 3G UM ATIPTA “SIITIR I3 TIMqq LTITIA
SITTWL LITNCID WOIIDILI 3 I8GT 39T 93 374wIp ‘owd g3 wp SITIMA A3TITID WOIIOIT2 I3 WYL 097 Iq3 NRTASIP ‘e® Sl T
ATIGALIIAS JUNIIIOD 3 0F PUMO; T LIUInbATF Iovenosax smewid gy ATIYALIDAD JTUIIVOD 3q ©F punoy ST Lomendaly ITUWOSAT weswid T
7w 3q3 T PIITF STIINI3 o-p 3 0y woiasaxdxa w3 Ty oA c3e@ 3 UT PIITI STIIDITI O-P MF I07 TOTSIAIIXY g3 TT W3S
-DOoD DOY3MINanT U JO INTIA I3 £q PITITONE L[esToald 8T end -00> TOTFWIFNUT T8 JO InTA N3 Lq PITITOMS ATasToaxs sT sud
F3 JO I8 PIIRIMENIN, SIUT  CDRTEFL-Angeradway A[Fuox3a 93 JO 9338 PIJRINIEIM, STL DAITRTT-Imywradmay A[Poox3s
FoNrado #T AINITHI X3 JO F00 T AL 13370 oerd IITUISUT Fopywzado 87 81933752 IG3 3O W JT A0 s1933TRR JuNTd 2TUTIUF
TR SINDX0 SWOTITPUOT SHI] 339k 0 PATINbAT Lsmanbazy Fyosnd TIIALYG SINDDO FUOTITPOOD 8O3 399 03 paxTrbar Lousnbazy JFoamd
J-a07 10 £: Ly weawid g3 WGy PUNOJ ST 3T A J-A0T IO >3 saserd 93 3953 prnog $T 3T
*Fupdwep repuey ST ~IIIEED TWpTWI STQIITIIC
0T SUOTITPUOS 33 A35T39s Logy JY AT00 JueOTITUETS ATTeoTEARd 07 STOTITPWOD I3 AJST3w8 L3 JT ATO0 FWeSTITRIIS ArreeTesd
v pdacow Ton3 AW SWOTINTos w3 (PRENIsd ATAATINITIL #% p33dO008 T} AT FVOTINIOS 33 PIJWINGS0d ATIATINITS
e MOTSIAIAMD DTFMQUIDY ‘swd TNIjnu v uy sojgwdedozd SI¥ SUOTSSAXIMOD DTIWQETPE ‘39 TRINIT ¥ U vopyuSedoxd
°9 ‘xog -1 JJIIMOIM T3TA AHOTWOW I  $393737%9 W OA3 IO 00 UITA "9 fxoy X ST3STOSE YITA LBOTETR TI  *8I3337n% 0PI QA3 IO ITO TITA

ACTI PIFRIITITIY

¢ SINITME FJUNTI OAL IO IO
TIPA WARIQTTInbE BT ¥eO DOI3OIT

N w—ld

TOIIDITT PITTTRIININ WIOFTU L
ampasery Jo

LTI POV SIYETNIR0S TUOITIAIOHLT,

fdod R

CALIISSYIONN

TOTIIFTIODA T #ed DOIDITH U oy COTIwPRdoad IATT-ENTpIW AT
ISTNIFIIEL TF SIFPIIWOD 20dAX ST} ‘9@ DOI3OI[I WIOFTMUOT W
UF S3AUA TMOTssaIdend £q 9700 Jo Modsrmr} pow worsyviedozd Jo
£ioaq) TRISUAR AI0K ¥ JO JUIEioTaAIp IGT T d93s I8ITF ¥ £y

{£095Ty “oX AswL ‘9cgy “ox "foIg)

*SWILT ‘{out *dd Ty ‘CoST ‘TITW  XOH ‘D £Q ‘SYD NOWLITIT
WHOJINANON ¥ 5I NOLIVOVJIOHI ZBION “weBygopH ‘IogIy wuy
“Ar03810qw] E2YRAL] DOIFOITT ‘UWETIOTR 3O A3ITIATUN T

av

AOTJ PRIRIFTIOTY
03 DOTIWBTIIIATT LOTFWGINILIAT

~3T3WQETLY 3 JOo DOFSUAXE ¢

BISIITI ICWLI OAL 30 IO

TITA aNTIGITTOLE UT ¥99 DOXIDITE
hgichd "1

TOLIDSTT PITYTWIINAN WIOTTUN AT,
aImpadexz ;0

JUTIINQ PUN $IFW[NIPOZ TPITIAIONT,

QITLISSYICH

Aod A

ENIIqIIInbas ur ovd VOIIDITI TR TT mojywdedozd FETT-ERTPIE 9UL
TeTnoTIIed O SIIPTSU0D 210dAT $THF Fsed TOIFOITP TIOFFUNOOT ¥
TE saAwa TenCTesazdmod Ag 2970T JO jxodsTel) pow wijvdsdord Jo
Az0am3 TRIITR JIOE v JO CHIOTasIp Iq3 UF d93S 3SITT w SY

(€01 *of XFeE ‘9L “ox -fozg)

LT TOUT °dd T ‘CoST ‘warww  “XoE *5 A4 ‘Syo NOIoETE
WEDIIMANON ¥V NI NOIIYOVAOHd ZSION ~TeITHETR ‘I0GI¥ TUV
fLzo3wIoqw] SOTSAGI WOIOITT “MFTHOTH JO LITRIAATU 3T

a¥

EER S VY VY




